• We just launched and are currently in beta. Join us as we build and grow the community.

Computer Vision Masterclass For Free

ByLighTing

Scalability Tester
B Rep
0
0
0
Rep
0
B Vouches
0
0
0
Vouches
0
Posts
120
Likes
25
Bits
2 MONTHS
2 2 MONTHS OF SERVICE
LEVEL 1 400 XP
  • Understand the basic intuition about Cascade and HOG classifiers to detect faces
  • Implement face detection using OpenCV and Dlib library
  • Learn how to detect other objects using OpenCV, such as cars, clocks, eyes, and full body of people
  • Compare the results of three face detectors: Haarcascade, HOG (Histogram of Oriented Gradients) and CNN (Convolutional Neural Networks)
  • Detect faces using images and the webcam
  • Understand the basic intuition about LBPH algorithm to recognize faces
  • Implement face recognition using OpenCV and Dlib library
  • Recognize faces using images and the webcam
  • Understand the basic intuition about KCF and CSRT algorithms to perform object tracking
  • Learn how to track objects in videos using OpenCV library
  • Learn everything you need to know about the theory behind neural networks, such as: perceptron, activation functions, weight update, backpropagation, gradient descent and a lot more
  • Implement dense neural networks to classify images
  • Learn how to extract pixels and features from images in order to build neural networks
  • Learn the theory behind convolutional neural networks and implement them using Python and TensorFlow
  • Implement transfer learning and fine tuning to get incredible results when classifying images
  • Use convolutional neural networks to classify the following emotions in images and videos: happy, anger, disgust, fear, surprise and neutral
  • Compress images using linear and convolutional autoencoders
  • Detect objects in images in videos using YOLO, one of the most powerful algorithms today
  • Recognize gestures and actions in videos using OpenCV
  • Learn how to create hallucinogenic images with Deep Dream
  • Learn how to revive famous artists with style transfer
  • Create images that don’t exist in the real world with GANs (Generative Adversarial Networks)
  • Implement image segmentation do extract useful information from images and videos
Requirements
  • Programming logic
  • Basic Python programming
Who this course is for:
  • Beginners who are starting to learn Computer Vision
  • Undergraduate students who are studying subjects related to Artificial Intelligence
  • People who want to solve their own problems using Computer Vision
  • Students who want to work in companies developing Computer Vision projects
  • People who want to know all areas inside Computer Vision, as well as know the problems that these techniques are able to solve
  • Anyone interested in Artificial Intelligence or Computer Vision
  • Data scientists who want to grow their portfolio
  • Professionals who want to understand how to apply Computer Vision to real projects
You must upgrade your account or reply in the thread to view hidden text.
 

430,210

312,253

312,262

Top